WordPress database error: [Disk full (/var/tmp/#sql-temptable-3e3-1a960c-db1.MAI); waiting for someone to free some space... (errno: 28 "No space left on device")]
SHOW FULL COLUMNS FROM `wpfpr1_options`

WordPress database error: [Disk full (/var/tmp/#sql-temptable-3e3-1a960c-db2.MAI); waiting for someone to free some space... (errno: 28 "No space left on device")]
SHOW FULL COLUMNS FROM `wpfpr1_options`

WordPress database error: [Disk full (/var/tmp/#sql-temptable-3e3-1a960c-db3.MAI); waiting for someone to free some space... (errno: 28 "No space left on device")]
SHOW FULL COLUMNS FROM `wpfpr1_options`

WordPress database error: [Disk full (/var/tmp/#sql-temptable-3e3-1a960c-db4.MAI); waiting for someone to free some space... (errno: 28 "No space left on device")]
SHOW FULL COLUMNS FROM `wpfpr1_options`

Enantioselective synthesis of ammonium cations – Nature - The Finance News

Enantioselective synthesis of ammonium cations – Nature

  • 1.

    Knouse, Ok. W. et al. Unlocking P(V): reagents for chiral phosphorothioate synthesis. Science 361, 1234–1238 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Hayakawa, Y., Hyodo, M., Kimura, Ok. & Kataoka, M. The first uneven synthesis of trialkyl phosphates on the idea of dynamic kinetic decision within the phosphite methodology utilizing a chiral supply in a catalytic method. Chem. Commun. 1704–1705 (2003).

  • 3.

    Bergin, E. et al. Synthesis of P-stereogenic phosphorus compounds. Asymmetric oxidation of phosphines beneath Appel circumstances. J. Am. Chem. Soc. 129, 9566–9567 (2007).

    CAS 

    Google Scholar
     

  • 4.

    Pitchen, P., Duñach, E., Deshmukh, M. N. & Kagan, H. B. An environment friendly uneven oxidation of sulfides to sulfoxides. J. Am. Chem. Soc. 106, 8188–8193 (1984).

    CAS 

    Google Scholar
     

  • 5.

    Liu, G., Cogan, D. A. & Ellman, J. A. Catalytic uneven synthesis of tert-butanesulfinamide. Application to the uneven synthesis of amines. J. Am. Chem. Soc. 119, 9913–9914 (1997).

    CAS 

    Google Scholar
     

  • 6.

    Wedekind, E. Zur charaktersitik stereoisomerer Ammoniumsaize. J. Chem. Soc. 32, 3561–3569 (1899).

    CAS 

    Google Scholar
     

  • 7.

    Wedekind, E. & Wedekind, O. Über die Aktivierung einer cyclischen asymmetrischen Ammoniumbase. Chem. Ber. 40, 4450–4456 (1907).


    Google Scholar
     

  • 8.

    Fröhlich, E. & Wedekind, E. Über asymmetrische ammoniumsaize des p-anisidins. Chem. Ber. 40, 1009–1013 (1907).


    Google Scholar
     

  • 9.

    Lehn, J.-M. Nitrogen inversion. Fortschr. Chem. Forsch. 15, 311–377 (1970).

    CAS 

    Google Scholar
     

  • 10.

    Dolling, U.-H., Davis, P. & Grabowski, E. J. J. Efficient catalytic uneven alkylations. 1. Enantioselective synthesis of (+)-indacrinone by way of chiral section-switch catalysis. J. Am. Chem. Soc. 106, 446–447 (1984).

    CAS 

    Google Scholar
     

  • 11.

    Brown, D. R., Lygo, R., McKenna, J., McKenna, J. M. & Hutley, B. G. The most popular steric course of quaternisation of 1-alkylpiperidines. J. Chem. Soc.1967 1184–1194 (1967).


    Google Scholar
     

  • 12.

    Brois, S. J. Aziridines. XI. Nitrogen inversion in N-haloaziridines. J. Am. Chem. Soc. 90, 506–508 (1968).

    CAS 

    Google Scholar
     

  • 13.

    Montanari, F., Moretti, I. & Torre, G. Asymmetric introduction at trivalent nitrogen. Optically energetic 2-methyl-3,3-diphenyloxaziridine, a compound with molecular asymmetry due solely to the nitrogen atom. Chem. Commun. 1968, 1694–1695 (1968).


    Google Scholar
     

  • 14.

    Mannschreck, A. & Seitz, W. Separation of invertomers (diastereoisomers) of diaziridines. Slow inversion at tervalent nitrogen atoms. Angew. Chem. Int. Edn Engl. 8, 212–213 (1969).

    CAS 

    Google Scholar
     

  • 15.

    Prelog, V. & Wieland, P. Über die Spaltung der Tröger’schen Base in optische Antipoden, ein Beitrag zur Stereochemie des dreiwertigen Stickstoffs. Helv. Chim. Acta 27, 1127–1134 (1944).

    CAS 

    Google Scholar
     

  • 16.

    Wilen, S. H., Qi, J. Z. & Williard, P. G. Resolution, uneven transformation, and configuration of Troeger’s base. Application of Troeger’s base as a chiral solvating agent. J. Org. Chem. 56, 485–487 (1991).

    CAS 

    Google Scholar
     

  • 17.

    Pope, W. J. & Peachey, S. J. Asymmetric optically energetic nitrogen compounds. Dextro- and laevo-benzylphenylallylmethylammonium iodides and bromides. J. Chem. Soc. 75, 1127–1131 (1899).

    CAS 

    Google Scholar
     

  • 18.

    Havinga, E. Spontaneous formation of optically energetic substances. Biochim. Biophys. Acta 13, 171–174 (1954).

    CAS 

    Google Scholar
     

  • 19.

    Kostyanovsky, R. G., Lyssenko, Ok. A., Krutiusa, O. N. & Kostyanovsky, V. R. Isomorphism of chiral ammonium salts Ph(All)N+Et(Me)X·CHCl3. Mendeleev Commun. 19, 19–20 (2009).

    CAS 

    Google Scholar
     

  • 20.

    Torbeev, V. Y., Lyssenko, Ok. A., Kharybin, O. N., Antipin, M. Y. & Kostyanovsky, R. G. Lamellar racemic twinning as an impediment for the decision of enantiomers by crystallization: the case of Me(All)N+(CH2Ph)Ph X (X = Br, I) salts. J. Phys. Chem. B 107, 13523–13531 (2003).

    CAS 

    Google Scholar
     

  • 21.

    Tanaka, Ok., Okada, T. & Toda, F. Separation of enantiomers of 2,2′-dihydroxy-1, 1′-binaphthyl and 10,10′-dihydroxy-9,9′-biphenanthryl by complexation with n-alkylcinchonidinium halides. Angew. Chem. Int. Edn Engl. 32, 1147–1148 (1993).


    Google Scholar
     

  • 22.

    Toda, F., Tanaka, Ok., Stein, Z. & Goldberg, I. Optical decision of binaphthyl and biphenanthryl diols by inclusion crystallization with N-alkylcinchonidium halides. Structural characterization of the resolved supplies. J. Org. Chem. 59, 5748–5751 (1994).

    CAS 

    Google Scholar
     

  • 23.

    Du, H. et al. A brand new methodology for optical decision of BINOL by molecular complexation with (S)-5-oxopyrrolidine-2-carboxanilide. Tetrahedr. Lett. 43, 5273–5276 (2002).

    CAS 

    Google Scholar
     

  • 24.

    Deng, J. et al. Resolution of omeprazole by inclusion complexation with a chiral host BINOL. Tetrahedron Asymmetry 11, 1729–1732 (2000).

    CAS 

    Google Scholar
     

  • 25.

    Schanz, H. J., Linseis, M. A. & Gilheany, D. G. Improved decision strategies for (R,R)- and (S,S)-cyclohexane-1,2-diamine and (R)- and (S)-BINOL. Tetrahedron Asymmetry 14, 2763–2769 (2003).

    CAS 

    Google Scholar
     

  • 26.

    Roy, B. N. et al. A novel methodology for giant-scale synthesis of lamivudine by cocrystal formation of racemic lamivudine with (S)-(−)-1,1′-Bi(2-naphthol) [(S)-(BINOL)]. Org. Process Res. Dev. 13, 450–455 (2009).

    CAS 

    Google Scholar
     

  • 27.

    Ratajczak-Sitarz, M., Katrusiak, A., Gawrońska, Ok. & Gawroński, J. Racemate decision by way of diastereomeric helicates in hydrogen-bonded co-crystals: the case of BINOL-diamine complexes. Tetrahedron Asymmetry 18, 765–773 (2007).

    CAS 

    Google Scholar
     

  • 28.

    Jin, S., Dong, Q., Wang, D. & Zhou, W. Six hydrogen bond directed supramolecular adducts fashioned between racemic-bis-β-naphthol and N-containing fragrant bases. J. Mol. Struct. 1013, 143–155 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 29.

    Tayama, E. & Tanaka, H. An environment friendly optical decision of nitrogen-centered chiral beta-hydroxy-tetraalkylammonium salts by way of complexation with (R)-BINOL. Tetrahedr. Lett. 48, 4183–4185 (2007).

    CAS 

    Google Scholar
     

  • 30.

    Tayama, E., Otoyama, S. & Tanaka, H. Resolution of nitrogen-centered chiral tetraalkylammonium salts: software to [1,2] Stevens rearrangements with N-to-C chirality transmission. Tetrahedron Asymmetry 20, 2600–2608 (2009).

    CAS 

    Google Scholar
     

  • 31.

    Shirakawa, S. et al. Tetraalkylammonium salts as hydrogen-bonding catalysts. Angew. Chem. Int. Ed. 54, 15767–15770 (2015).

    CAS 

    Google Scholar
     

  • 32.

    Pike, S. J., Lavagnini, E., Varley, L. M., Cook, J. L. & Hunter, C. A. H-bond donor parameters for cations. Chem. Sci. 10, 5943–5951 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Hunter, C. A. Quantifying intermolecular interactions: tips for the molecular recognition toolbox. Angew. Chem. Int. Ed. 43, 5310–5324 (2004).

    CAS 

    Google Scholar
     

  • 34.

    Taylor, R. & Kennard, O. Crystallographic proof for the existence of C—H···O, C—H···N, and C—H···Cl hydrogen bonds. J. Am. Chem. Soc. 104, 5063–5070 (1982).

    CAS 

    Google Scholar
     

  • 35.

    Lacour, J., Vial, L. & Herse, C. Efficient NMR enantiodifferentiation of chiral quats with BINPHAT anion. Org. Lett. 4, 1351–1354 (2002).

    CAS 

    Google Scholar
     

  • 36.

    Lacour, J., Londez, A., Goujon-Ginglinger, C., Buss, V. & Bernardinelli, G. Configurational ordering of cationic chiral dyes utilizing a novel C(2)-symmetric hexacoordinated phosphate anion. Org. Lett. 2, 4185–4188 (2000).

    CAS 

    Google Scholar
     

  • 37.

    Michon, C., Gonçalves-Farbos, M.-H. & Lacour, J. NMR enantiodifferentiation of quaternary ammonium salts of Tröger base. Chirality 21, 809–817 (2009).

    CAS 

    Google Scholar
     

  • 38.

    Steed, Ok. M. & Steed, J. W. Packing issues: excessive Z′ crystal buildings and their relationship to cocrystals, inclusion compounds, and polymorphism. Chem. Rev. 115, 2895–2933 (2015).

    CAS 

    Google Scholar
     

  • 39.

    Spackman, M. A. & Jayatilaka, D. Hirshfield floor evaluation. CrystEngComm 11, 19–32 (2009).

    CAS 

    Google Scholar
     

  • 40.

    Gavezzotti, A. Are crystal buildings predictable? Acc. Chem. Res. 27, 309–314 (1994).

    CAS 

    Google Scholar
     

  • 41.

    Gavezzotti, A. & Fillipini, G. Geometry of the intermolecular X–H···Y (X, Y = N, O) hydrogen bond and the calibration of empirical hydrogen-bond potentials. J. Phys. Chem. 98, 4831–4837 (1994).

    CAS 

    Google Scholar
     

  • 42.

    Mullin, J. W. in Ullman’s Encylopedia of Industrial Chemistry Vol. 10 (ed. Elvers, B.) 582–630 (Wiley-VCH, 2012).

  • 43.

    Kulchat, S. & Lehn, J.-M. Dynamic covalent chemistry of nucleophilic substitution part trade of quaternary ammonium salts. Chem. Asian J. 10, 2484–2496 (2015).

    CAS 

    Google Scholar
     

  • 44.

    Lee, I., Park, Y. Ok., Huh, C. & Lee, H. W. Nucleophilic substitution response of benzyl bromide with N,N‐dimethylaniline: significance of equilibrium cross‐interplay fixed. J. Phys. Org. Chem. 7, 555–560 (1994).

    CAS 

    Google Scholar
     

  • 45.

    Bordwell, F. G. & Hughes, D. L. Rate-equilibrium relationships for reactions of households of carbanion nucleophiles with N-benzyl-N,N-dimethylanilinium cations and with alkyl chlorides, bromides, and iodides. J. Am. Chem. Soc. 108, 7300–7309 (1986).

    CAS 

    Google Scholar
     

  • 46.

    Abboud, J.-L. M., Notario, R., Bertran, J. & Sold, M. in Progress in Physical Organic Chemistry (ed. Taft, R. W.) (Wiley, 1993).

  • 47.

    Keith, J. M., Larrow, J. F. & Jacobsen, E. N. Practical issues in kinetic decision reactions. Adv. Synth. Catal. 343, 5–26 (2001).

    CAS 

    Google Scholar
     

  • 48.

    Brands, Ok. M. J. & Davies, A. J. Crystallization-induced diastereomer transformations. Chem. Rev. 106, 2711–2733 (2006).

    CAS 

    Google Scholar
     

  • 49.

    Flack, H. D. On enantiomorph-polarity estimation. Acta Crystallogr. A 39, 876–881 (1983).


    Google Scholar
     

  • 50.

    Genov, G. R., Douthwaite, J. L., Lahdenperä, A. S. Ok., Gibson, D. C. & Phipps, R. J. Enantioselective distant C–H activation directed by a chiral cation. Science 367, 1246–1251 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 51.

    Wang, Y., Sun, J. & Ding, Ok. Practical methodology and novel mechanism for optical decision of BINOL by molecular complexation with N-benzylcinchoninium chloride. Tetrahedron 56, 4447–4451 (2000).

    CAS 

    Google Scholar