Functional HPV-specific PD-1+ stem-like CD8 T cells in head and neck cancer – Nature
Hashimoto, M. et al. CD8 T cell exhaustion in continual an infection and cancer: alternatives for interventions. Annu. Rev. Med. 69, 301–318 (2018).
McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion throughout continual viral an infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2019).
Gallimore, A. et al. Induction and exhaustion of lymphocytic choriomeningitis virus-particular cytotoxic T lymphocytes visualized utilizing soluble tetrameric main histocompatibility complicated class I-peptide complexes. J. Exp. Med. 187, 1383–1393 (1998).
Zajac, A. J. et al. Viral immune evasion attributable to persistence of activated T cells with out effector operate. J. Exp. Med. 188, 2205–2213 (1998).
Barber, D. L. et al. Restoring operate in exhausted CD8 T cells throughout continual viral an infection. Nature 439, 682–687 (2006).
Im, S. J. et al. Defining CD8+ T cells that present the proliferative burst after PD-1 remedy. Nature 537, 417–421 (2016).
Utzschneider, D. T. et al. T cell issue 1-expressing reminiscence-like CD8+ T cells maintain the immune response to continual viral infections. Immunity 45, 415–427 (2016).
He, R. et al. Follicular CXCR5- expressing CD8+ T cells curtail continual viral an infection. Nature 537, 412–428 (2016).
Jadhav, R. R. et al. Epigenetic signature of PD-1+TCF1+CD8 T cells that act as useful resource cells throughout continual viral an infection and reply to PD-1 blockade. Proc. Natl Acad. Sci. USA 116, 14113–14118 (2019).
Zander, R. et al. CD4+ T cell assistance is required for the formation of a cytolytic CD8+ T cell subset that protects towards continual an infection and cancer. Immunity 51, 1028–1042 (2019).
Hudson, W. H. et al. Proliferating transitory T cells with an effector-like transcriptional signature emerge from PD-1+ stem-like CD8+ T cells throughout continual an infection. Immunity 51, 1043–1058 (2019).
Sade-Feldman, M. et al. Defining T cell states related to response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013 (2018).
Brummelman, J. et al. High-dimensional single cell evaluation identifies stem-like cytotoxic CD8+ T cells infiltrating human tumors. J. Exp. Med. 215, 2520–2535 (2018).
Jansen, C. S. et al. An intra-tumoral area of interest maintains and differentiates stem-like CD8 T cells. Nature 576, 465–470 (2019).
Mann, T. H. & Kaech, S. M. Tick-TOX, it’s time for T cell exhaustion. Nat. Immunol. 20, 1092–1094 (2019).
Bhatt, Okay. H. et al. Profiling HPV-16-specific T cell responses reveals broad antigen reactivities in oropharyngeal cancer sufferers. J. Exp. Med. 217, e20200389 (2020).
Krishna, S. et al. Human papilloma virus particular immunogenicity and dysfunction of CD8+ T cells in head and neck cancer. Cancer Res. 78, 6159–6170 (2018).
Bobisse, S. et al. Sensitive and frequent identification of excessive avidity neo-epitope particular CD8+ T cells in immunotherapy-naive ovarian cancer. Nat. Commun. 9, 1092 (2018).
Wieland, A. et al. T cell receptor sequencing of activated CD8 T cells in the blood identifies tumor-infiltrating clones that broaden after PD-1 remedy and radiation in a melanoma affected person. Cancer Immunol. Immunother. 67, 1767–1776 (2018).
Simoni, Y. et al. Bystander CD8+ T cells are considerable and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018).
Rosato, P. C. et al. Virus-specific reminiscence T cells populate tumors and might be repurposed for tumor immunotherapy. Nat. Commun. 10, 567 (2019).
Gattinoni, L. et al. A human reminiscence T cell subset with stem cell-like properties. Nat. Med. 17, 1290–1297 (2011).
Kamphorst, A. O. et al. Rescue of exhausted CD8 T cells by PD-1-focused therapies is CD28-dependent. Science 355, 1423–1427 (2017).
Patel, J. J., Levy, D. A., Nguyen, S. A., Knochelmann, H. M. & Day, T. A. Impact of PD-L1 expression and human papillomavirus standing in anti-PD1/PDL1 immunotherapy for head and neck squamous cell carcinoma—systematic evaluate and meta-evaluation. Head Neck 42, 774–786 (2020).
Skeate, J. G., Woodham, A. W., Einstein, M. H., Da Silva, D. M. & Kast, W. M. Current therapeutic vaccination and immunotherapy methods for HPV-associated ailments. Hum. Vaccines Immunother. 12, 1418–1429 (2016).
Ha, S. J. et al. Enhancing therapeutic vaccination by blocking PD-1-mediated inhibitory alerts throughout continual an infection. J. Exp. Med. 205, 543–555 (2008).
de Martel, C., Georges, D., Bray, F., Ferlay, J. & Clifford, G. M. Global burden of cancer attributable to infections in 2018: a worldwide incidence evaluation. Lancet Glob. Health 8, e180–e190 (2020).
Wieland, A. et al. Defining HPV-specific B cell responses in sufferers with head and neck cancer. Nature, https://doi.org/10.1038/s41586-020-2931-3 (2020).
NIH Tetramer Core Facility. Production Protocols: Class I MHC Tetramer Preparation https://tetramer.yerkes.emory.edu/support/protocols#10 (2006).
Vita, R. et al. The Immune Epitope Database (IEDB): 2018 replace. Nucleic Acids Res. 47, D339–D343 (2019).
Sidney, J. et al. Measurement of MHC/peptide interactions by gel filtration or monoclonal antibody seize. Current Protoc. Immunol. 100, 18.3.1–18.3.36 (2013).
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression knowledge. Nat. Biotechnol. 33, 495–502 (2015).
DeTomaso, D. & Yosef, N. FastProject: a instrument for low-dimensional evaluation of single-cell RNA-seq knowledge. BMC Bioinformatics 17, 315 (2016).
Trapnell, C. et al. The dynamics and regulators of cell destiny selections are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).