WordPress database error: [Disk full (/var/tmp/#sql-temptable-3e3-1a9718-1223.MAI); waiting for someone to free some space... (errno: 28 "No space left on device")]
SHOW FULL COLUMNS FROM `wpfpr1_options`

WordPress database error: [Disk full (/var/tmp/#sql-temptable-3e3-1a9718-1224.MAI); waiting for someone to free some space... (errno: 28 "No space left on device")]
SHOW FULL COLUMNS FROM `wpfpr1_options`

WordPress database error: [Disk full (/var/tmp/#sql-temptable-3e3-1a9718-1225.MAI); waiting for someone to free some space... (errno: 28 "No space left on device")]
SHOW FULL COLUMNS FROM `wpfpr1_options`

WordPress database error: [Disk full (/var/tmp/#sql-temptable-3e3-1a9718-1226.MAI); waiting for someone to free some space... (errno: 28 "No space left on device")]
SHOW FULL COLUMNS FROM `wpfpr1_options`

Functional HPV-specific PD-1+ stem-like CD8 T cells in head and neck cancer – Nature - The Finance News

Functional HPV-specific PD-1+ stem-like CD8 T cells in head and neck cancer – Nature

  • 1.

    Hashimoto, M. et al. CD8 T cell exhaustion in continual an infection and cancer: alternatives for interventions. Annu. Rev. Med. 69, 301–318 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion throughout continual viral an infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Gallimore, A. et al. Induction and exhaustion of lymphocytic choriomeningitis virus-particular cytotoxic T lymphocytes visualized utilizing soluble tetrameric main histocompatibility complicated class I-peptide complexes. J. Exp. Med. 187, 1383–1393 (1998).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Zajac, A. J. et al. Viral immune evasion attributable to persistence of activated T cells with out effector operate. J. Exp. Med. 188, 2205–2213 (1998).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Barber, D. L. et al. Restoring operate in exhausted CD8 T cells throughout continual viral an infection. Nature 439, 682–687 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 6.

    Im, S. J. et al. Defining CD8+ T cells that present the proliferative burst after PD-1 remedy. Nature 537, 417–421 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 7.

    Utzschneider, D. T. et al. T cell issue 1-expressing reminiscence-like CD8+ T cells maintain the immune response to continual viral infections. Immunity 45, 415–427 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    He, R. et al. Follicular CXCR5- expressing CD8+ T cells curtail continual viral an infection. Nature 537, 412–428 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 9.

    Jadhav, R. R. et al. Epigenetic signature of PD-1+TCF1+CD8 T cells that act as useful resource cells throughout continual viral an infection and reply to PD-1 blockade. Proc. Natl Acad. Sci. USA 116, 14113–14118 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Zander, R. et al. CD4+ T cell assistance is required for the formation of a cytolytic CD8+ T cell subset that protects towards continual an infection and cancer. Immunity 51, 1028–1042 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Hudson, W. H. et al. Proliferating transitory T cells with an effector-like transcriptional signature emerge from PD-1+ stem-like CD8+ T cells throughout continual an infection. Immunity 51, 1043–1058 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Sade-Feldman, M. et al. Defining T cell states related to response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Brummelman, J. et al. High-dimensional single cell evaluation identifies stem-like cytotoxic CD8+ T cells infiltrating human tumors. J. Exp. Med. 215, 2520–2535 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Jansen, C. S. et al. An intra-tumoral area of interest maintains and differentiates stem-like CD8 T cells. Nature 576, 465–470 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 15.

    Mann, T. H. & Kaech, S. M. Tick-TOX, it’s time for T cell exhaustion. Nat. Immunol. 20, 1092–1094 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Bhatt, Okay. H. et al. Profiling HPV-16-specific T cell responses reveals broad antigen reactivities in oropharyngeal cancer sufferers. J. Exp. Med. 217, e20200389 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Krishna, S. et al. Human papilloma virus particular immunogenicity and dysfunction of CD8+ T cells in head and neck cancer. Cancer Res. 78, 6159–6170 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Bobisse, S. et al. Sensitive and frequent identification of excessive avidity neo-epitope particular CD8+ T cells in immunotherapy-naive ovarian cancer. Nat. Commun. 9, 1092 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 19.

    Wieland, A. et al. T cell receptor sequencing of activated CD8 T cells in the blood identifies tumor-infiltrating clones that broaden after PD-1 remedy and radiation in a melanoma affected person. Cancer Immunol. Immunother. 67, 1767–1776 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Simoni, Y. et al. Bystander CD8+ T cells are considerable and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 21.

    Rosato, P. C. et al. Virus-specific reminiscence T cells populate tumors and might be repurposed for tumor immunotherapy. Nat. Commun. 10, 567 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 22.

    Gattinoni, L. et al. A human reminiscence T cell subset with stem cell-like properties. Nat. Med. 17, 1290–1297 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Kamphorst, A. O. et al. Rescue of exhausted CD8 T cells by PD-1-focused therapies is CD28-dependent. Science 355, 1423–1427 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Patel, J. J., Levy, D. A., Nguyen, S. A., Knochelmann, H. M. & Day, T. A. Impact of PD-L1 expression and human papillomavirus standing in anti-PD1/PDL1 immunotherapy for head and neck squamous cell carcinoma—systematic evaluate and meta-evaluation. Head Neck 42, 774–786 (2020).

    Article 

    Google Scholar
     

  • 25.

    Skeate, J. G., Woodham, A. W., Einstein, M. H., Da Silva, D. M. & Kast, W. M. Current therapeutic vaccination and immunotherapy methods for HPV-associated ailments. Hum. Vaccines Immunother. 12, 1418–1429 (2016).

    Article 

    Google Scholar
     

  • 26.

    Ha, S. J. et al. Enhancing therapeutic vaccination by blocking PD-1-mediated inhibitory alerts throughout continual an infection. J. Exp. Med. 205, 543–555 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    de Martel, C., Georges, D., Bray, F., Ferlay, J. & Clifford, G. M. Global burden of cancer attributable to infections in 2018: a worldwide incidence evaluation. Lancet Glob. Health 8, e180–e190 (2020).

    Article 

    Google Scholar
     

  • 28.

    Wieland, A. et al. Defining HPV-specific B cell responses in sufferers with head and neck cancer. Nature, https://doi.org/10.1038/s41586-020-2931-3 (2020).

  • 29.

    NIH Tetramer Core Facility. Production Protocols: Class I MHC Tetramer Preparation https://tetramer.yerkes.emory.edu/support/protocols#10 (2006).

  • 30.

    Vita, R. et al. The Immune Epitope Database (IEDB): 2018 replace. Nucleic Acids Res. 47, D339–D343 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Sidney, J. et al. Measurement of MHC/peptide interactions by gel filtration or monoclonal antibody seize. Current Protoc. Immunol. 100, 18.3.1–18.3.36 (2013).

    Article 

    Google Scholar
     

  • 32.

    Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression knowledge. Nat. Biotechnol. 33, 495–502 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    DeTomaso, D. & Yosef, N. FastProject: a instrument for low-dimensional evaluation of single-cell RNA-seq knowledge. BMC Bioinformatics 17, 315 (2016).

    Article 

    Google Scholar
     

  • 34.

    Trapnell, C. et al. The dynamics and regulators of cell destiny selections are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    CAS 
    Article 

    Google Scholar