The polar oxy-metabolome reveals the 4-hydroxymandelate CoQ10 synthesis pathway – Nature

  • 1.

    Morgan, N. V. et al. Evidence that autosomal recessive spastic cerebral palsy-1 (CPSQ1) is brought on by a missense variant in HPDL. Brain Commun. 3, fcab002 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 2.

    Husain, R. A. et al. Bi-allelic HPDL variants trigger a neurodegenerative illness starting from neonatal encephalopathy to adolescent-onset spastic paraplegia. Am. J. Hum. Genet. 107, 364–373 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 3.

    Ghosh, S. G. et al. Biallelic variants in HPDL, encoding 4-hydroxyphenylpyruvate dioxygenase-like protein, result in an childish neurodegenerative situation. Genet. Med. 23, 524–533 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 4.

    Wiessner, M. et al. Biallelic variants in HPDL trigger pure and sophisticated hereditary spastic paraplegia. Brain 144, 1422–1434 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • 5.

    Ye, X. et al. 4-hydroxyphenylpyruvate dioxygenase-like protein promotes pancreatic most cancers cell development and is related to glutamine-mediated redox stability. Front. Oncol. 10, 3074 (2021).


    Google Scholar
     

  • 6.

    Tang, D., Kang, R., Berghe, T. V., Vandenabeele, P. & Kroemer, G. The molecular equipment of regulated cell loss of life. Cell Res. 29, 347–364 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 7.

    Hirsila, M., Koivunen, P., Gunzler, V., Kivirikko, Okay. I. & Myllyharju, J. Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible issue. J. Biol. Chem. 278, 30772–30780 (2003).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 8.

    Masson, N. et al. Conserved N-terminal cysteine dioxygenases transduce responses to hypoxia in animals and vegetation. Science 365, 65–69 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 
     

  • 9.

    Laukka, T. et al. Fumarate and succinate regulate expression of hypoxia-inducible genes through TET enzymes. J. Biol. Chem. 291, 4256–4265 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 10.

    Moran, G. R. 4-Hydroxyphenylpyruvate dioxygenase. Arch. Biochem. Biophys. 433, 117–128 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 11.

    Ast, T. & Mootha, V. Okay. Oxygen and mammalian cell tradition: are we repeating the experiment of Dr. Ox? Nature Metabolism 1, 858–860 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 12.

    Deshpande, A. R., Wagenpfeil, Okay., Pochapsky, T. C., Petsko, G. A. & Ringe, D. Metal-dependent operate of a mammalian acireductone dioxygenase. Biochemistry 55, 1398–1407 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 13.

    Drazic, A. & Winter, J. The physiological function of reversible methionine oxidation. Biochim. Biophys. Acta 1844, 1367–1382 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 14.

    Choroba, O. W., Williams, D. H. & Spencer, J. B. Biosynthesis of the vancomycin group of antibiotics:  involvement of an uncommon dioxygenase in the pathway to (S)-4-hydroxyphenylglycine. JACS 122, 5389–5390 (2000).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Hubbard, B. Okay., Thomas, M. G. & Walsh, C. T. Biosynthesis of lp-hydroxyphenylglycine, a non-proteinogenic amino acid constituent of peptide antibiotics. Chem. Biol. 7, 931–942 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 16.

    Lemberger, L., Klutch, A. & Kuntzman, R. The metabolism of tyramine in rabbits. J. Pharmacol. Exp. Ther. 153, 183 (1966).

    CAS 

    Google Scholar
     

  • 17.

    Lichter-Konecki, U., Hipke, C. M. & Konecki, D. S. Human phenylalanine hydroxylase gene expression in kidney and different nonhepatic tissues. Mol. Genet. Metab. 67, 308–316 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 18.

    Gunsior, M., Ravel, J., Challis, G. L. & Townsend, C. A. Engineering p-hydroxyphenylpyruvate dioxygenase to a p-hydroxymandelate synthase and proof for the proposed benzene oxide intermediate in homogentisate formation. Biochemistry 43, 663–674 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 19.

    O’Hare, H. M., Huang, F., Holding, A., Choroba, O. W. & Spencer, J. B. Conversion of hydroxyphenylpyruvate dioxygenases into hydroxymandelate synthases by directed evolution. FEBS Lett. 580, 3445–3450 (2006).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 20.

    Gunsior, M. et al. The biosynthetic gene cluster for a monocyclic β-lactam antibiotic, nocardicin A. Chem. Biol. 11, 927–938 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 21.

    Bhat, S. G. & Vaidyanathan, C. S. Involvement of 4-hydroxymandelic acid in the degradation of mandelic acid by Pseudomonas convexa. J. Bacteriol. 127, 1108–1118 (1976).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 22.

    Stefely, J. A. & Pagliarini, D. J. Biochemistry of mitochondrial coenzyme Q biosynthesis. Trends Biochem. Sci. 42, 824–843 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 23.

    Lu, T.-T., Lee, S. J., Apfel, U.-P. & Lippard, S. J. Aging-associated enzyme human clock-1: substrate-mediated discount of the diiron middle for five-demethoxyubiquinone hydroxylation. Biochemistry 52, 2236–2244 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 24.

    Wang, Y. et al. The anti-neurodegeneration drug clioquinol inhibits the getting older-related protein CLK-1. J. Biol. Chem. 284, 314–323 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 25.

    Payet, L.-A. et al. Mechanistic particulars of early steps in coenzyme Q biosynthesis pathway in yeast. Cell Chem. Biol. 23, 1241–1250 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 26.

    Stefely, J. A. et al. Mitochondrial protein features elucidated by multi-omic mass spectrometry profiling. Nat. Biotechnol. 34, 1191–1197 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 27.

    Valera, M. J. et al. The mandelate pathway, a substitute for the phenylalanine ammonia lyase pathway for the synthesis of benzenoids in ascomycete yeasts. Appl. Environ. Microbiol. 86, e00701–20 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 28.

    Kaymak, I. et al. Mevalonate pathway gives ubiquinone to keep up pyrimidine synthesis and survival in p53-deficient most cancers cells uncovered to metabolic stress. Cancer Res. 80, 189–203 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 29.

    Kapalczynska, M. et al. 2D and 3D cell cultures – a comparability of several types of most cancers cell cultures. Arch. Med. Sci. 14, 910–919 (2018).

    PubMed 

    Google Scholar
     

  • 30.

    Doimo, M. et al. Genetics of coenzyme q10 deficiency. Mol. Syndromol. 5, 156–162 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 31.

    Martínez-Reyes, I. et al. Mitochondrial ubiquinol oxidation is important for tumour development. Nature 585, 288–292 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 32.

    Xie, L. X. et al. Resveratrol and para-coumarate function ring precursors for coenzyme Q biosynthesis. J. Lipid Res. 56, 909–919 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 33.

    Fernández-del-Río, L. et al. Kaempferol will increase ranges of coenzyme Q in kidney cells and serves as a biosynthetic ring precursor. Free Radical Biol. Med. 110, 176–187 (2017).

    Article 
    CAS 

    Google Scholar
     

  • 34.

    Booth, A. N. et al. Urinary phenolic acid metabolites of tyrosine. J. Biol. Chem. 235, 2649–2652 (1960).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Hartl, J., Kiefer, P., Meyer, F. & Vorholt, J. A. Longevity of main coenzymes permits minimal de novo synthesis in microorganisms. Nat Microbiol 2, 17073 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 36.

    Meyers, R. M. et al. Computational correction of copy quantity impact improves specificity of CRISPRCas9 essentiality screens in most cancers cells. Nat. Genet. 49, 1779–1784 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 37.

    Uphoff, C. C. & Drexler, H. G. Detecting mycoplasma contamination in cell cultures by polymerase chain response. Methods Mol. Biol. 731, 93–103 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 38.

    Parker, S. J. et al. LKB1 promotes metabolic flexibility in response to vitality stress. Metab. Eng. 43, 208–217 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 39.

    Wenig, P. & Odermatt, J. OpenChrom: a cross-platform open supply software program for the mass spectrometric evaluation of chromatographic information. BMC Bioinf. 11, 405 (2010).

    Article 
    CAS 

    Google Scholar
     

  • 40.

    Fernandez, C. A., Des Rosiers, C., Previs, S. F., David, F. & Brunengraber, H. Correction of 13C mass isotopomer distributions for pure secure isotope abundance. J. Mass Spectrom. 31, 255–262 (1996).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 41.

    Gao, J. et al. Integrative evaluation of advanced most cancers genomics and scientific profiles utilizing the cBioPortal. Sci Signal. 6, pl1 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 42.

    Cerami, E. et al. The cBio most cancers genomics portal: an open platform for exploring multidimensional most cancers genomics information. Cancer Discov. 2, 401–404 (2012).

    Article 

    Google Scholar